<dd id="wjaiq"></dd>
            <div id="wjaiq"><tr id="wjaiq"><object id="wjaiq"></object></tr></div>

                1. 歡迎訪問河源市中小企業公共技術服務平臺

                  您當前所在的位置: 首頁 > 專家庫 > 正文

                  汪志波

                  • 學科領域:應用數學
                  • 所屬單位:廣東工業大學
                  • 研究方向:偏微分方程數值計算
                  • 學歷/職稱:副教授
                  • 專家介紹: 汪志波,男,2015年8月獲澳門大學博士學位,2016年1月以“青年百人A類”人才計劃引進,主要從事分數階偏微分方程數值解法的研究,已發表近20篇SCI論文。

                  專家詳情

                         汪志波,男,2015年8月獲澳門大學博士學位,2016年1月以“青年百人A類”人才計劃引進,主要從事分數階偏微分方程數值解法的研究,已發表近20篇SCI論文。

                   

                  主要論文:(SCI)
                  [1] Z. Wang*,   S. Vong, On some   Ostrowski-like type inequalities involving n knots, Appl. Math.   Lett. 26 (2013) 296-300.

                  [2] Z. Wang*,   S. Vong, A   Gauss-Newton-like method for inverse eigenvalue problems, Int. J.   Comput. Math. 90 (2013) 1435-1447.

                  [3] Z. Wang*,   S. Vong, Compact   difference schemes for the modified anomalous fractional subdiffusion   equation and the fractional diffusion-wave equation, J. Comput.   Phys. 277 (2014) 1-15.

                  [4] S. Vong, Z. Wang*, A compact   difference scheme for a two dimensional fractional Klein-Gordon equation with   Neumann boundary conditions, J. Comput. Phys. 274 (2014) 268-282.

                  [5] Z. Wang,   S. Vong*, A   high-order exponential ADI scheme for two dimensional time fractional   convection-diffusion equations, Comput. Math. Appl. 68 (2014)   185-196.

                  [6] Z. Wang*,   S. Vong, On some   generalizations of an Ostrowski-Grüss type integral inequality,   Appl. Math. Comput. 229 (2014) 239-244.

                  [7] S. Vong, Z. Wang*, Compact   finite difference scheme for the fourth-order fractional subdiffusion system,   Adv. Appl. Math. Mech. 6 (2014) 419-435.

                  [8] S. Vong, Z. Wang*, High order   difference schemes for a time fractional differential equation with Neumann   boundary conditions, East Asian J. Appl. Math. 4 (2014) 222-241.

                  [9] S. Vong, Z. Wang*, A high order compact finite difference   scheme for time fractional Fokker-Planck equations, Appl. Math. Lett. 43   (2015) 38-43.

                  [10] S. Vong, Z. Wang*, A high   order compact scheme for the nonlinear fractional Klein-Gordon equation,   Numer. Meth. Part Differ. Equ. 31 (2015) 706-722.

                  [11] S. Vong, Z. Wang*, A   compact ADI scheme for the two dimensional time fractional diffusion-wave   equation in polar coordinates, Numer. Meth. Part Differ. Equ. 31 (2015)   1692-1712.

                  [12] Z. Wang*, S. Vong, A   high-order ADI scheme for the two-dimensional time fractional diffusion-wave   equation, Int. J. Comput. Math. 92 (2015) 970-979.

                  [13] L. Guo, Z. Wang*, S.   Vong, Fully discrete local discontinuous Galerkin methods for some   time-fractional fourth-order problems, Int. J. Comput. Math. 93 (2016)   1665-1682.

                  [14] Z. Wang*, S. Vong, S. Lei, Finite   difference schemes for a two-dimensional time-space fractional differential   equation, Int. J. Comput. Math. 93 (2016) 578-595.

                  [15] S. Vong*, P. Lyu, Z.   Wang, A compact difference scheme for fractional sub-diffusion equations   with the spatially variable coefficient under Neumann boundary conditions, J.   Sci. Comput. 66 (2016) 725-739.

                  [16] Z. Wang*, S. Vong, A compact difference   scheme for a two dimensional nonlinear fractional Klein-Gordon equation in   polar coordinates, Comput. Math. Appl. 71 (2016) 2524-2540.

                  [17] P. Lyu, S. Vong, Z. Wang*,   A finite difference method for boundary value problems of a Caputo fractional   differential equation, East Asian J. Appl. Math. 7 (2017) 752-766.

                  [18] Z. Yao, Z. Wang*, A   compact difference scheme for fourth-order fractional sub-diffusion equations   with Neumann boundary conditions, J. Appl. Anal. Comput., accepted.

                   

                  科研項目:

                  [1] 主持國家自然科學基金-青年基金,22萬,2018.01-2020.12;

                  [2] 主持國家自然科學基金-數學天元基金,3萬,2017.01-2017.12;

                  [3] 主持廣東省自然科學基金博士啟動基金,10萬,2017.05-2020.05;

                  [4] 主持廣東省教育廳特色創新類項目,10萬,2018.01-2019.12;

                  [5] 主持廣東工業大學青年百人科研啟動基金,20萬,2016.01-2021.01。


                   

                  Copyright ? 2018 www.tkqd.tw All Rights Reserved.

                  河源市高新技術開發區創業服務中心大樓二層

                  技術支持:廣東深海信息科技有限公司 網站備案:粵ICP備17157211號

                  云南快乐10分开奖记录